Effects of cyclooxygenase-2 gene inactivation on cardiac autonomic and left ventricular function in experimental diabetes.
نویسندگان
چکیده
Glucose-mediated oxidative stress and the upregulation of cyclooxygenase (COX)-2 pathway activity have been implicated in the pathogenesis of several vascular complications of diabetes including diabetic neuropathy. However, in nondiabetic subjects, the cardiovascular safety of selective COX-2 inhibition is controversial. The aim of this study was to explore the links between hyperglycemia, oxidative stress, activation of the COX-2 pathway, cardiac sympathetic integrity, and the development of left ventricular (LV) dysfunction in experimental diabetes. R wave-to-R wave interval (R-R interval) and parameters of LV function measured by echocardiography using 1% isoflurane, LV sympathetic nerve fiber density, LV collagen content, and markers of myocardial oxidative stress, inflammation, and PG content were assessed after 6 mo in control and diabetic COX-2-deficient (COX-2(-/-)) and littermate, wild-type (COX-2(+/+)) mice. There were no differences in blood glucose, LV echocardiographic measures, collagen content, sympathetic nerve fiber density, and markers of oxidative stress and inflammation between nondiabetic (ND) COX-2(+/+) and COX-2(-/-) mice at baseline and thereafter. After 6 mo, diabetic COX-2(+/+) mice developed significant deteriorations in the R-R interval and signs of LV dysfunction. These were associated with a loss of LV sympathetic nerve fiber density, increased LV collagen content, and a significant increase in myocardial oxidative stress and inflammation compared with those of ND mice. Diabetic COX-2(-/-) mice were protected against all these biochemical, structural, and functional deficits. These data suggest that in experimental diabetes, selective COX-2 inactivation confers protection against sympathetic denervation and LV dysfunction by reducing intramyocardial oxidative stress, inflammation, and myocardial fibrosis.
منابع مشابه
Effects of Short-term Renovascular Hypertension and Type 2 Diabetes on Cardiac Functions in Rats
Background: The cardiac effects simultaneously occurring during experimental hypertension and diabetes have rarely been investigated. This study aimed at examining the effects of short-term renovascular hypertension and type 2 diabetes on cardiac functions. Methods: Five groups (7 each) of male Sprague-Dawley rats, including a control group, a diabetes (induced by Streptozocin and Nicotinamide)...
متن کاملComparison of Fetal Echocardiography for Fetal Cardiac Structure in Women with Gestational Diabetes Mellitus and Normal Pregnancies
BackgroundIncreased metabolic rate of hyperglycemia in gestational diabetes causes macrosomia, which can also affect the fetal heart. The thickness of the walls of the heart and its function in women with gestational diabetes mellitus (GDM) can change over time before treatment. We aimed to evaluate fetal cardiac structure in terms of ventricular wall thickness and its function in women w...
متن کاملImpact of Exercise Endurance Training on PurB Gene Expression and Cardiac Function
Introduction: Endurance training has significant effects on the renewal of heart tissue, including myosin heavy chain (MHC) proteins. On the other side, Purine-rich element-binding protein &beta (purB) decreases the &alphaMHC gene expression. The aim of this study was to determine the impact of exercise endurance training on purB gene expression in the heart of Wistar rats. Methods: Fourteen r...
متن کاملتأثیر ۱۲ هفته تمرین مقاومتی بر بیان ژن RAGE VCAM, ICAM, در قلب رتهای دیابتی شده با STZ
Background: Cardiomyopathy is a side effect caused by diabetes. Prolonged hyperglycemia gives rise to an increase in the expression of the receiver gene RAGE subsequently triggering pathogenesis cardiac signaling pathways in the heart of rats with type II diabetes. The present paper aims to examine how a 12 week Resistance training on gene expressions RAGE, ICAM, VCAM in the heart of diabetic r...
متن کاملThe effect of resistance training on PI3K/mTORc1 signaling in left ventricular of diabetes rats
Background: Clinical evidence points to the effective role of genetic factors and intracellular signaling pathways in physiological cardiac hypertrophy. This study aimed to assess the response of PI3K/mTORc1 signaling pathway in cardiac tissue to resistance training in obese diabetic rats. Materials and Methods: For this purpose, 21 male wistar rats (220±20 g) were obese by 6 weeks high fat di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 296 2 شماره
صفحات -
تاریخ انتشار 2009